
. .,

SCALABLE, FINITE ELEMENT ANALYSIS OF ELECTROMAGNETIC

SCAllERING  AND RADIATION

Error Estimation And h-Adaptivity

Tom Cwik, John Lou and Daniel Katz

Jet Propulsion Laboratory

California Institute of Technology

Pasadena CA, 91109

Abstract

In this paper a method for simulating

from complex objects is reviewed; namely, an

electromagnetic fields  scattered

unstructured finite element code

that does not use traditional mesh partitioning algorithms. The complete

software package is implemented on the Cray T3D massively parallel

processor using both Cray Adaptive FURTRAN  (CRAFT) compiler constructs to

simplify portions of the code that operate on the irregular data, and optimized

message passing constructs on portions of the code that operate on regular

data and require optimum machine performance. The above finite element

solution package is then integrated into an error estimation and adaptive mesh

refinement algorithm. An error for the fields over the mesh is estimated and

used to drive an adaptive mesh refinement algorithm that refines

where errors are above a given tolerance. This refined mesh is

once again for a finite element solution of the fields. After estimating

second time, the mesh is again refined as needed. This process

until the error is reduced to an allowable level.

the mesh

then used

the error a

continues
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1. PARALLEL FINITE ELEMENT ANALYSIS FOR ELECTROMAGNETICS

Large scale parallel computation can be an enabling resource in many

areas of engineering and science. The available memory capacity and

computational speed on large distributed memory machines can allow the

simulation of complicated engineering components if the simulation algorithm

attains an appreciable fraction of the machine peak performance, and if undue

cost in porting the code or in developing the code for the parallel machine is not

incurred. The issue of code parallelization is especially significant when

considering unstructured mesh simulations. The unstructured mesh models

considered in this paper result from a finite element simulation of

electromagnetic fields scattered from geometrically complex objects (either

penetrable or impenetrable.) T!le finite element model is used to capture the

complex materials involved in the simulation, and to maintain fidelity of the

structure’s geometry. The unstructured mesh must be distributed among the

processors, as must the resultant sparse system of linear equations. Since a

distributed memory architecture does not allow direct access to the irregularly

distributed unstructured mesh and sparse matrix data, partitioning algorithms

which are not needed in the sequential software have traditionally been used to

efficiently spread the data among the processors. In this paper an alternate

method for simulating electromagnetic fields scattered from complex objects is

reviewed; namely, an unstructured finite element code that does not use

traditional mesh partitioning algorithms. The complete software package is

implemented on the Cray T3D massively parallel processor using both Cray

Adaptive FORTRAN (CRAFT) compiler constructs to simplify portions of the

code that operate on the irregular data, and optimized message passing

constructs on portions of the code that operate on regular data and require

optimum machine performance.

The finite element modeling software begins with mesh data

constructed on a workstation using a commercially available CA[) meshing

package. Because the electromagnetic scattering simulation is an open



region problem (scattered fields exist in all space to infinity), the mesh must be

truncated at a surface that maintains accuracy in the modeled fields and limits

the volume of free space that is meshed. Local, absorbing boundary

conditions can be used to truncate the mesh, but these may be problematic

because they become more accurate as the truncating surface is removed

from the scatterer, requiring greater computational expense, and they may be

problem dependent. The approach outlined in this paper solves either the two

or three-dimensional vector Helmholtz  wave equations using a coupled finite

element-integral equation method. A specific integral equation (boundary

element) formulation that efficiently and accurately truncates the computational

domain is used. A partitioned system of equations results from the

combination of discretizing the volume in and around the scatterer using the

finite element method ard discretizing  the surface using the integral ec:tiation

method. This system of equations is solved using a two-step solution,

combining a sparse

method. The matrix

observable quantities

iterative (or direct) solver and a dense factorization

equation assembly, solution, and the calculation of

are all computed in parallel, utilizing varying number of

processors for each stage of the calculation.

The above finite element solution package is then integrated into an

error estimation and adaptive mesh refinement algorithm. An error for the

fields over the mesh is estimated and used to drive an adaptive mesh

refinement

tolerance.

solution of

again refined as needed. This process continues until the error is reduced to

an allowable level.

algorithm that refines the mesh where errors are above a given

This refined mesh is then used once again for a finite element

the fields. After estimating the error a second time, the mesh is

2. THE COUPLED FINITE ELEMENT-INTEGRAL EQUATION MODEL

To practically compute a solution to exterior electromagnetic scattering

problems, the domain must be truncated at some finite surface where the
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Sommerfeld radiation condition is enforced, either approximately or exactly.

Approximate methods attempt to truncate the mesh using only local field

information at each grid point, whereas exact methods are global, needing

information from the entire mesh boundary [1]. The global method used here

couples a finite element solution interior to the bounding surface with an

eflcient  integral equation solution that exactly enforces the Sommerfeld

radiation condition. The problem domain is divided into interior and exterior

regions, separated at the mesh boundary. The unknown sources in the

integral equation are directly related to the tangential fields on the mesh

boundary, and the radiation condition is implicitly enforced exactly through the

use of the free-space Green’s function. Fields in the two regions are coupled

by enforcing boundary conditions on tangential field components at the mesh

boundary, therebv  producing a unique and exact solution io Maxwell ’s

equations in both regions.

2.1 Two-dimensional Formulation—A Conformal Surface -

The two-dimensional scattering geometry is shown in Figure 1. The

truncating surface S, taken to lie on or close to the boundary of the scatterer,

divides the geometry into interior region V and exterior region W. Volume V

can be inhomogenous, containing Iossy  material and perfect conductors which

can lie partly on the

the incident field is

surface [2]. For the TEZ polarization and for wavenumber k,

Hi”’(p) = ~eJti’’cO<@)+ysin(O  ))eJo’

which is due due a source in the exterior region.

(1)
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Figure 2. Geometry of two-dimensional scatterer for TEZ polarization.

To model the inhomogeneous region V, the wave equation for H= ~HZ

is used; p is

position and

Vx ‘— V  X  H(p)  - /@k2t@) = O
q (P)

pEIJ
(2)

the two-dimensional position vector. Both & and p are functions of

may be complex, i.e., E = E’– J&” and p = ~’– jp”, to account for

dielectric and magnetic loss. To model the homogeneous exterior region W, the

surface magnetic field integral equation [3]

H(P) = 2Hinc(p) + ~$H,Jp’)H;2)(~  -pl)Cos(n’,p - p’)dl’

is used; & = nxH+  and I& = hxE+ are the tangential field

exterior to the surface S. HO(2) and HI (2) are the outgoing

p,p’Es
(3)

components just

first and second

order Hankel functions; (n,p –P’) denotes  the angle  between source and

observation point, and principal value integrations are implied.

Boundary conditions must be enforced at all material boundaries, at

infinity, and at the boundary surface of the two solutions (S). At material
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boundaries, which only reside within V, boundary conditions are enforced in the

finite element solution by a proper choice of elements, or by explicitly zeroing

tangential electric field components to model perfectly conducting surfaces. In

the integral equation (3), the Sommerfeld

enforced by the outgoing Green’s function.

remaining need be enforced at the surface S.

components gives

radiation condition is naturally

The only boundary conditions

Equating tangential electric field

Em(p)+ 1—fix VxH(p)=O pEs
j 6.)E (4)

on the surface S. If part of the sutiace  encloses a perfe.ut  conductor, H(r) within

the conductor is identically zero, and the usual boundary condition Etan = O

applies. Similarly, equating tangential magnetic field components gives

&M)-nxH(p)=O p~s (5)

on the surface S.

The wave equation (2) and integral equation (3), as well as boundary

conditions (4) and (5), are combined into three equations. This system of

equations is discretized and solved numerictilly  yielding the magnetic fields in

the interior region and tangential magnetic and electric fields on the surface S.

Far fields are then easily found from an integration of the sutface  tangential

fields.

For a finite element solution of the wave equation, (2) is dotted against a

testing function T = ~Tz, integrated over the volume, and integrated again by

parts yielding the “weak form”
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The boundary condition on tangential components of the electric field (4) is

combined into this equation by noting that in the contour integral in (6),

nxVx H==jcoFE,.. ; therefore, substituting (4) into this integral gives

( 1~VTz VHZ -prk2Tz Hz du - jmO~TzEtmds
“ &r du (7)

for the first equation of the system (LM = ~E,~ ~ is the surface tangent). The

second equation is found by enforcing (5) in a weak sense, i.e., dotting (5)

against a testing function U and integrating

@[n xH(P)-H,anlck  =Q
au (8)

The third and final equation of the system is found from a standard moment

solution to (3), dotting the equation against a testing function W and integrating

along the contour S. This equation will not be written explicitly, the reader is

referred to the method of moments literature [e.g. 3] for further details.

2.2 Three-Dimensional Formulation—A Surface of Revolution .
In the three-dimensional formulation the bounding surface chos&d5#?~n

minimal surface of revolution that fits around the scatterer. The integral

equation is discretized using sub-domain basis functions along the surface of

revolution generator, and Fourier harmonics azimuthally, to greatly limit the

storage necessary in the integral equation component of the moclel.  [4-5].

As in the two-dimensional case, a finite element discretization is used in

the interior region. The analogous weak form of the wave equation in (6) for the

three dimensional case is
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~is the magnetic field (the E-equation is used in this paper; a dual ~-

equation can also be written), Wis a testing function, the asterisk denotes

conjugation, and ~ x ii is the tangential component of Fon the surface of

revolution S ( W). Equation

surface S. These fields will

element basis functions. In

(9) represents the fields internal to and on the

be modeled using a set of properly chosen finite

Equation (9), ~, and V, are the

and permeability, respectively, and kO and qO are free-space

impedance, respectively.

A set of tetrahedral, vector edge elements (Whitney

used to discretize (9),

~w(r) = Zm(r)VAn(r)- An(r) VAm(r)

SOR Generating

IE

Surface Coordinates (t, $)

Cu

relative permittivity

wave number and

elements) [6] are

(lo)

, SOF{ Surface

Figure 2. Geometry of scattering problem showing interior and exterior regions

of model.
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in which A(r) are the tetrahedral shape functions and indices (m, n) refer to the

two nodal points of each edge. These elements are used for both expansion

and testing (Galerkin’s  method) in the finite element domain.

In the formulation of the integral equation, fictitious electric (~”; x R) and

magnetic (~  = –fi x ~) surface currents, equivalent to the tangential magnetic

and electric fields just on the exterior of the boundary surface, are defined on

the boundary. These currents produce the scattered fields in the exterior

region. A linear combination of the electric field integral equation (EFIE) and

the magnetic field integral equation (MFIE)  is used in this formulation, and it

can be succinctly expressed as

zM[~o]+z,[7]=vi (11)

where ‘M and ZJ are the integro-differential operators used in defining the

CFIE,  and V, represents the incident field.

The integral equation on the sutface  of revolution is discretized  by a set of

basis functions with piecewise linear variation along the surface of revolution

generator, and with an azimuthal Fourier modal variation. Applying Galerkin’s

method, both expansion and testing functions are given as

(12)

in which T~(t) is a

revolution surface.

triangle function spanning the klh annulus  on the surface of

The variables t and @ refer to the local surface of revolution

coordinates, and p is the distance from the z-axis to a point on the surface of

revolution. Each annulus  spans two segments along the generator, each

referred to as a strip. Adjacent triangles overlap on one segment.
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At the artificial surface of revolution separating the interic)r and exterior

regions, boundary conditions on the continuity of tangential field components

must be enforced. Three equations are written for the three unknown field

quantities of interest, the magnetic field ~ internal to the volume v and the

electric and magnetic surface currents, ~ and ~, on the boundary. Continuity

of the magnetic field across the boundary is enforced in a weak sense

N;X1l-qo(ixil”)ds=o (13)
&

where u is a testing function. Continuity of the electric field across the

boundary is made implicit in the finite element equation in the surface integral

term ii x ~ by replacing this term with M.

The surface integral in (9) and the first component of the integral in (13)

are termed the coupling integrals, since with a convenient choice of the

unknown in the first and of the testing function in the second, they are made to

couple interior and exterior fieid representations. To evaluate these terms, the

finite element basis function ~ is evaluated approximately on the portion of

surface of revolution projected from the triangular facet of the tetrahedron onto a

strip. Such projections are curved triangles, curved quadrilaterals, or curved

pentagons. The evaluation of the integrals are done numerically. These

coupling integrals, as well as the discretization of the second surface integral

in (13), complete the discretization of the problem.

2.3 Numerical Solution of the Linear System

After discretization, a coupled linear set of equations results. In the two-

dimensional formulation, f irst order simplex elements are used for

discretization of the finite element equation [1], and piecewise  triangular basis

functions are used in the integral equation. Having introduced the basis and

testing functions for the volume as well as the surface unknowns, substitution

into the complete set of equations yields
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K C o H o

c+ o z, M = o

0 ZM ZJ J vi

where

K=(Kp[~p].  ~q)

C=-qo(umwq)

z,= T@. “[W.]).

z,, =(qnpm] “ q

z, =(z,m[um]. un)

(14)

(15)

The symbol t indicates the adjoint of a matrix. Note that both K and C are

sparse, ZO is tri-diagonal,  and Z~ and Z~ are banded. In particular the system

is complex, non-symmetric, and non-Hermitian.  This set of equations has the

same form in both the two-dimensional and three-dimensional formulations.

The parallel solution to this matrix equation system is completed in two

steps. Initially H in the first equation in (14) is written as H = –K-’CM  and

substituted into the second equation resulting in

7AK Z. M o
Zb, ZJ J = vi

(16)

where Z~ = –C+K-’C. This relatively small system is then solved directly for M

and J. By solving the system in two steps, the interior solution is decoupled

from the incident field Vi, allowing for efficient solutions when many excitation

fields are present as in monostatic radar cross section simulations.
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The relative numbers of unknowns in H and M (or J) makes the

calculation of K-lC the major computational expense. This operation is the

solution of a system of equations, KX = C, where C is a rectangular matrix with

a potentially large number of columns in the case of electrically large

scatterers. The solution is accomplished by using a symmetric variant of the

quasi-minimum residual iterative algorithm. The resulting overall matrix (16) is

treated as being dense, and the solution of this second system is

accomplished via a direct dense LU decomposition, since its size is relatively

small.

3. ADAPTIVE MESH REFINEMENT

An adaptive mesh refinement package that constructs a set of adaptively

refined meshes based on an error estimate is added to the above formulation.

These error estimates follow from the Cauchy convergence properties of finite

element mathematical analysis and only require a small percentage of the time

needed to solve the complete system over the previous step’s mesh. Based

on the error estimate generated, the mesh is adaptive refined--independent of

the user--where needed and the fields are calculated over the new mesh by

solution of the sparse matrix equation. This step is repeated until the error in

the fields over the mesh is uniform and reduced below a user prescribed level.

3.1 Error Estimation

Error estimates have been well developed in finite element structural

and fluid analysis [7]. Estimates of error in the magnetic or electric field have

been less developed in electromagnetic analysis. This work follows from the

error estimates in [8] where p-enrichment was implemented. The error

estimate is a local estimate of the error in the fields over each element. The

estimate is computed element by element rather than over the entire mesh for

computational efficiency. By defining u to be the exact solution to the wave

equation (either E or H), and J to be the computed solution over a given mesh

the estimate can be derived. The error in the field for a given solution is then



~~ = u -;. The derivation of the estimate e follows that of standard finite

element analysis [7]. The result is an equation that estimates the error that

would exist over the next refined mesh, based on the global calculated error

over the coarse mesh. The equation for this error is

(17)

where

B, (e, t) = fJaVe  ● Vt – k~bet)dV (18)

and the surface integral is along edges of adjoining elements k and j, and the

term L~ (r) is a surface integral at the computational boundary where a radiation

boundary condition is imposed. & is the evaluation of (18) using the known

solution L, resulting in a vector of known entries. Equatiori (17) is therefore an

equation for e over the k’h element, given known right-hand-side terms found

from a coarse mesh solution. The testing functions f are the fine mesh

elements, thereby producing a solution for an estimate of the error in the

coarse grid projected onto a refined

value, the element will be refined; if

element need not be refined. This

mesh. If this error is above a tolerance

the error is below the given tolerance the

refinement decision based on the error

estimate is the adaptive h-refinement process.

3.2 Adaptive Mesh Refinement

The h-refinement procedure consists of two main components, an

adaptive mesh adjustment step, and an adaptive mesh refinement step. The

input to our adaptive mesh refinement procedure is a coarse mesh, an array

containing local error estimates for the coarse mesh, and a prescribed error

tolerance. The adaptive mesh adjustment step implements a scheme that,
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given a mesh with a subset of elements indicated to refined, generates

information necessary for

adaptive mesh refinement

the input mesh based on

element.

The adaptive mesh

producing a consistently refined global mesh. The

step performs the actual refinement operations on

the refinement information stored in

refinement algorithm is implemented

each coarse

for triangular

meshes and will be extended to tetrahedral meshes. The software is

developed in Fortran 90 using many of its advanced features such as modules,

user-defined structures, pointers, dynamic memory management and array

operations. The software is therefore highly modular and robust, It has

interfaces to both Fortran 77 and Fortran 90.

4. PARALLEL IMPLEMENTATION AND P.ESULTS

A parallel implementation of the above finite element formulation

consists of an initial decomposition of the sparse matrix data, solution of the

sparse matrix equation for the unknown magnetic field over the mesh and the

surface tangential electric and magnetic fields, and finally the calculation of

observable quantities such as the radar cross section. This implementation is

then connected to the error estimation algorithm and adaptive mesh refinement

algorithms. A description of the parallel three-dimensional finite element

implementation will be given with results, followed by results from the two-

dimensional adaptive mesh refinement algorithm.

The matrix decomposition code, termed P_SLICE, consists of a number

of subroutines. Initially, the potentially large mesh files are read (READ). Then

the connectivity structure of the sparse matrix is generated and reordered

(CONNECT), followed the generation of the complex-valued entries of K (FEM),

building the connectivity structure and filling the C matrix (COUPLING). Finally

the individual files containing the row slabs of K and the row slabs of C must

be written to disk (WRITE). For each processor that will be used in the matrix

equation solver, one file containing the appropriate parts of both the K and C

matrices is written.
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Cray Research Adaptive FORTRAN (CRAFT) is used for the matrix

decomposition stage of the simulation. All large arrays are declared using

CD/R$ directives to be shared in either a block manner or a cyclic manner for

the leading dimension, with non-leading dimension distributed degenerately.

Using a block distribution of a matrix of size 256 on 4 processors leads to the

first 64 elements residing on processor O, the next 64 elements on processor

1, etc. A cyclic distribution would lead to processor O having elements (1, 5, 9,

. ..). processor 1 having elements (2, 6, 10, . ..). etc. A two dimensional array with

a degenerate distribution of the second dimension leads to all elements of the

array having a given index in the first dimension being on the same processor,

:egardiess  of the index in the second dimension. For example, a two

dimensional array of size (256,10) distributed degenerately over the second

dimension will have elements ((i,l), (i,2), . . . . (~,~0)) all located on the same

mocessor. Which processor this will be is dependent on the value of i, and the

method of distribution over the first dimension.

Routines which could be easily parallelized  by CRAFT directives were

FEM and part of COUPLING. The directive CD/R$ DO SHARED was added to

the parallelizable  loops to automatically distribute the work over all the

processors. Other routines that could be executed in parallel with a

combination of CRAFT and message passing included the READ and WRITE

routines. The remaining routines (CONNECT, and a second part of

COUPLING) are basically sequential routines, where only one processor is

doing the majority of the work, while using data spread across many (usually

all) processors.

Two files are read in the READ routine, one containing finite element

data, and the other containing integral equation data. The finite element file is

at least an order of magnitude larger than the integral equation file, and is read

by 4 processors. By using these 4 processors, the time of the RE’AD routine is

reduced roughly by a factor of 3 as compared to reading the file with

1 processor. Further reduction in this time may be possible; however, this

factor of 3 is currently sufficient, In the WRITE algorithm, data is assembled on

Is



each processing element and written to disk. On the T3D, it is faster to

assemble a local array and write out that data than to write out a distributed

array directly, since as the number of processors increases, more writes of

smaller amounts of data are being performed, and disk and network contention

develops. Scaling beyond this point quickly leads to diminishing returns from

each processor.

Figure 3 show the performance of P_SLICE over varying numbers of

processors for a simulation of scattering from a dielectric cylinder [9]. The

number of edges is the number of finite element unknowns in the problem. It

may be observed that for the routines that have been parallelized,  doubling the

number of processors reduces the amount of time by a factor of approximately

two. For routines that are sequential, where only one processor is doing the

work using the other processors’ data, the time goes up very slightly as the

number of processors for the overall code are increased. This is due strictly to

communication latency. As the number of processors increases, the

percentage of array elements which are not local increases, and the time to

load or store these elements is longer than the time to load or store local

elements. The 1/0 time should have roughly the same behavior, but for

practical tests the 1/0 time is more dependent on the 1/0 load of the other T3D

processors and the load on the front-end YMP that is between the T3D and the

disks than the number of T3D processors being used in P_SLICE. It is clear

that the routines that benefit most from the parallel implementation on the T3D

are COUPLING and WRITE.

16



25.00>

20.00-

= 15.00 -.—
g

?
i= 1o.oo-

5.00 –

0 . 0 0 -L

— L

■ WRITE

❑ COUPLING

❑ FEM

Izl CONNECT

❑ READ
— —

T90 32 64 128 256
Nur,?ber of Processors

Figure 3. Computation time and scaling for a relatively large simulation

(dielectric cylinder with 579,993 edges, radius = 1 cm,. height = 10 cm,

permittivity = 4.0 at 2.5 GHz). First column shows time for single processor

T90. Times on T90 for CONNECT and FEM have been combined.

As outlined above, the partitioned system of equations is solved in two

steps, namely P_SOLVE and P_FIELD. Initially the quasi-minimum residual

algorithm [10] is used to solve the sparse system of equations KX = C,

resulting in the reduced sub-matrix Z~. The parallel quasi-minimum residual

solver developed for this application operates on matrix data decomposed by

row slabs in P_SLICE after reordering. The machine is logically considered to

be a linear array of processors, with each slab of data residing in one of the

processors. C and X are also decomposed by row slabs, corresponding to

the row partition of the matrix. Central components of the quasi-minimum

residual algorithm that are affected by the use of a distributed memory machine

are the parallel sparse matrix-dense vector multiply, and dot products and

norm calculations that need vector data distributed over the machine. The
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dominant component is the matrix-vector multiply, accounting for approximately

80% of the time required to run P_SOLVE.

A parallel library of the needed level-one BLAS routines was developed

using CRAY T3D shrnem~ut and shrnem_get message passing. The

routines required by the quasi-minimum residual algorithm are CDOTU and

SCNRM2, and the parallel implementation of these was trivial, consisting of a

local BLAS call to calculate each processor’s contribution to the result, and a

call to a global sum routine to calculate the final result.

Shown in Figure 4 are plots of time to convergence on different numbers

of processors for five different problems [9]. The number of unknowns in the

finite element mesh and the number of columns of C are indicated on the

plots. The quasi-minimum residual algorithm was stopped when the

normalized residual was reduced three orders of magnitude for each column c~

C. With an initial guess being the zero vector, this results in a normalized

residual of 0.1940, a value that is sufficient for this scattering problem. Given a

fixed communication percentage and a fixed rate for local work, doubling the

number of processors for a given problem would halve the total solution time.

The curves in Figure 4 do not drop linearly at this rate because these

assumptions are not met. The decreased amount of work per processor

causes the curves to level off as the number of processors increases
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Figure4.  Time ofconvergence  for five different problems. The time shown is

the total execution time for the solver on different numbers of processors. The

C matrix had 116 columns in each case.

An example of results from the adaptive mesh refinement algorithm is

shown in Figure 5. The problem considered is a two-dimensional waveguide

filter structure. An initial coarse mesh of the geometry is generated.
An h-

polarized (h perpendicular to the paper) lowest order mode is incident from the

left. Absorbing boundary conditions are used at the left and right ports. Shown

colored on the plots is the magnetic field magnitude for solutions over the initial

coarse mesh and through 4 refinements. The refinement is driven by the error

estimate calculated over the mesh at each step of the calculation. It is seen
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Figure 5. Two-dimensional waveguide filter structure. Dimensions

!

are 0.45

cm height main section; .05 cm height reduced height section, centered in

guide; 0.9 cm length of each main section; 0.1 cm length of reduced height

section; Frequency = 15 GHz.; magnetic field amplitude plotted.
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that the fields

continues.

Shown in

converge to constant values

Figure 6 is the convergence of

as the refinen~ent  p rocess

the reflection coefficient for the

waveguide filter for each adaptive step. Plots are shown for uniform refinement

(dividing each triangular element uniformly without an error estimate) and the

adaptive refinement. It is seen that nearly exact convergence of the reflection

coefficient can

adaptive mesh

be found using nearly 4 times fewer elements using the

refinement process.
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